Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropeptides ; 105: 102416, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38430725

RESUMEN

The neuropeptide Y4 receptor (Y4R), a rhodopsin-like G protein-coupled receptor (GPCR) and the hormone pancreatic polypeptide (PP) are members of the neuropeptide Y family consisting of four receptors (Y1R, Y2R, Y4R, Y5R) and three highly homologous peptide ligands (neuropeptide Y, peptide YY, PP). In this family, the Y4R is of particular interest as it is the only subtype with high affinity to PP over NPY. The Y4R, as a mediator of PP signaling, has a pivotal role in appetite regulation and energy homeostasis, offering potential avenues for the treatment of metabolic disorders such as obesity. PP as anorexigenic peptide is released postprandial from the pancreas in response to food intake, induces satiety signals and contributes to hamper excessive food intake. Moreover, this system was also described to be associated with different types of cancer: overexpression of Y4R have been found in human adenocarcinoma cells, while elevated levels of PP are related to the development of pancreatic endocrine tumors. The pharmacological relevance of the Y4R advanced the search for potent and selective ligands for this receptor subtype, which will be significantly progressed through the elucidation of the active state PP-Y4R cryo-EM structure. This review summarizes the development of novel PP-derived ligands, like Obinepitide as dual Y2R/Y4R agonist in clinical trials or UR-AK86c as small hexapeptide agonist with picomolar affinity, as well as the first allosteric modulators that selectively target the Y4R, e.g. VU0506013 as potent Y4R positive allosteric modulator or (S)-VU0637120 as allosteric antagonist. Here, we provide valuable insights into the complex physiological functions of the Y4R and PP and the pharmacological relevance of the system in appetite regulation to open up new avenues for the development of tool compounds for targeted therapies with potential applications in metabolic disorders.


Asunto(s)
Polipéptido Pancreático , Receptores de Neuropéptido Y , Humanos , Polipéptido Pancreático/metabolismo , Receptores de Neuropéptido Y/metabolismo , Animales , Ligandos
2.
J Med Chem ; 66(13): 8745-8766, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37339079

RESUMEN

Positive allosteric modulators targeting the Y4 receptor (Y4R), a G protein-coupled receptor (GPCR) involved in the regulation of satiety, offer great potential in anti-obesity research. In this study, we selected 603 compounds by using quantitative structure-activity relationship (QSAR) models and tested them in high-throughput screening (HTS). Here, the novel positive allosteric modulator (PAM) VU0506013 was identified, which exhibits nanomolar affinity and pronounced selectivity toward the Y4R in engineered cell lines and mouse descending colon mucosa natively expressing the Y4R. Based on this lead structure, we conducted a systematic SAR study in two regions of the scaffold and presented a series of 27 analogues with modifications in the N- and C-terminal heterocycles of the molecule to obtain insight into functionally relevant positions. By mutagenesis and computational docking, we present a potential binding mode of VU0506013 in the transmembrane core of the Y4R. VU0506013 presents a promising scaffold for developing in vivo tools to move toward anti-obesity drug research focused on the Y4R.


Asunto(s)
Neuropéptido Y , Receptores de Neuropéptido Y , Animales , Ratones , Receptores de Neuropéptido Y/metabolismo , Relación Estructura-Actividad , Relación Estructura-Actividad Cuantitativa , Ensayos Analíticos de Alto Rendimiento , Obesidad , Regulación Alostérica
3.
Sci Adv ; 8(18): eabm1232, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35507650

RESUMEN

In response to three highly conserved neuropeptides, neuropeptide Y (NPY), peptide YY, and pancreatic polypeptide (PP), four G protein-coupled receptors mediate multiple essential physiological processes, such as food intake, vasoconstriction, sedation, and memory retention. Here, we report the structures of the human Y1, Y2, and Y4 receptors in complex with NPY or PP, and the Gi1 protein. These structures reveal distinct binding poses of the peptide upon coupling to different receptors, reflecting the importance of the conformational plasticity of the peptide in recognizing the NPY receptors. The N terminus of the peptide forms extensive interactions with the Y1 receptor, but not with the Y2 and Y4 receptors. Supported by mutagenesis and functional studies, subtype-specific interactions between the receptors and peptides were further observed. These findings provide insight into key factors that govern NPY signal recognition and transduction, and would enable development of selective drugs.

4.
J Med Chem ; 64(5): 2801-2814, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33595306

RESUMEN

Human neuropeptide Y receptors (Y1R, Y2R, Y4R, and Y5R) belong to the superfamily of G protein-coupled receptors and play an important role in the regulation of food intake and energy metabolism. We identified and characterized the first selective Y4R allosteric antagonist (S)-VU0637120, an important step toward validating Y receptors as therapeutic targets for metabolic diseases. To obtain insight into the antagonistic mechanism of (S)-VU0637120, we conducted a variety of in vitro, ex vivo, and in silico studies. These studies revealed that (S)-VU0637120 selectively inhibits native Y4R function and binds in an allosteric site located below the binding pocket of the endogenous ligand pancreatic polypeptide in the core of the Y4R transmembrane domains. Taken together, our studies provide a first-of-its-kind tool for probing Y4R function and improve the general understanding of allosteric modulation, ultimately contributing to the rational development of allosteric modulators for peptide-activated G protein-coupled receptors (GPCRs).


Asunto(s)
Benzotiazoles/farmacología , Receptores de Neuropéptido Y/antagonistas & inhibidores , Sulfonamidas/farmacología , Sitio Alostérico , Animales , Benzotiazoles/síntesis química , Benzotiazoles/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Mutagénesis , Mutación , Unión Proteica , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Estereoisomerismo , Sulfonamidas/síntesis química , Sulfonamidas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...